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GRIDLESS ELECTROSTATIC FIELD SOLVER FOR PARTICLE 
SIMULATION CODES IN CYLINDRICAL GEOMETRY 

1. R. Shokair and J. S. Wagner 
Sandia National Laboratories 

Plasma Theory Division 
P. O. BOX 5800 

Albuquerque, New Mexico 87185 

ABSTRACT 

A new gridless electrostatic field solver which utilizes Fourier decomposition in the 
azimuthal coordinate has been developed and tested. The scaling with the number of 
simulation particles is N log N. This algorithm has been implemented in the 
BUCKSHOT code, which originaly used a direct summation algorithm with N2 scaling. 
The Fourier decomposition in the new algorithm is done about the center of mass of 
each species. thus nonlinear ion hose physics is included in the m = O mode. Higher 
order modes describe non-axisymmetric profile changes. The breakeven point between 
the new solver and the direct summation algorithm is about N = 64 particles per 
species when up to m = 2 Fourier modes are kept. For a typical ion hose simulation 
with 256 particles per species the new solver is faster by a factor of about 2.7. 
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I. Introduction 
Relativistic eleetron beams propagating in theionfocused regime (IFR) undergo 

transverse (betatron) oscillations which result in an instability called the ion hose 
instability y. (lJ Because of the small ratio of the transverse energy to the longitudinal 
energy, it is customary to invoke the paraxial approximation and then decouple the 
transverse and longitudinal motions, using VZ = c in the transverse equations where VZ is the 
axial velocity and c is the speed of light. In IFR propagation, the main interactions are 
those caused by the beam and ion channel space charge and the beam self magnetic field. 
These interactions are governed by Poisson’s equation. 

In general, the beam and channel can have arbitrary density profiles with strongly 
enharmonic potentials. Also, the ion hose instability results in strong azimuthal 
asymmetries in the profiles. In these types of potentials the particle orbits are very 
complex and thus because of these difficulties, one of the most effective methods of 
analyzing the physics of relativistic electron beam propagation in the IFR is via computer 
simulations. 

Since the betatron wavelength for relativistic electron beams in the IFR is usually 
much larger than the amplitude of the transverse oscillations and the beam and channel 
transverse dimensions, the beam and channel can be divided into segments, where within 
each segment, the transverse interaction can be represented to a good approximation by 
infinitely long filaments of charge and current with no interaction between filaments in 
different segments. [2) Within each segment, the fields on a filament (also referred to as 
particle) can be calculated using Poisson “s equation and then the equations of motion can 
be solved and the particles pushed for the next step. A particle simulation code that makes 
use of the above approximations is the BUCKSHOT code. (3-4) In this code the field on a 
particle is found by direct summation over all the other particles within a segment, Thus 
no grid is used. This makes the code very simple and suitable for use in IFR propagation 
problems with no physical bounda~. The disadvantage of the code, however, is that the 
cpu time scales as N where N is the number of simulation pafiicles in a segment. Other 
gridless Poisson field solvers have been developed such as the Fast Multipole Expansion 
algorithm(s) which scale with N log N, however, the breakeven point between this kind of 
an algorithm and the direct summation is usually for an unacceptably large number of 
particles on vector machines such as the CRAY X-M P supercomputer. 

In this report we consider an alternate approach to the solution of Poisson’s 
equation in 2-D for a many particle system without utilizing a grid. This approach is 
based on Fourier decomposition in the azimuthal direction and writing the electric field in 
terms of radial integrals which are then replaced by sums over the particles. The overall 
scaling with the number of particles is N log N as will be described in the following 
sections. Asymptotically the algorithm also scales linearly with M, the number of Fourier 
modes kept in the expansion. However, for IFR propagation problems for which this 
algorithm was developed we find that low values of M (typical I y 2-4) are sufficient to 
resolve the azimuthal dependence. This is the case because the Fourier decomposition is 
done about the the center of mass of each charged particle species. This will be described 
in detail later. 

In the next few sections we describe in detail the theory for this solver. In 
section 11 we derive the solution of Poisson’s equation for a general charge distribution in 
2-D cylindrical geomet~. In section 111 this solution is applied to a system of point 



particles and the algorithm for the field solver is developed. The extension to finite sized 
particles is made in section IV, where a specific charge distribution is chosen for the 
simulation particles in order to keep the N log N scaling. In the last section, the algorithm 
is implemented in the BUCKSHOT code and a comparison between the direct summation 
solver and this new solver is made for an IFR propagation problem with strong ion hose 
growth. The CPU time for the two solvers is also compared for different numbers of 
particles. 

II. Solution of Poisson’s Equation in Cylindrical Geometry 
The situation of interest is to solve Poisson’s equation in two dimensional cylindrical 

geometry (r,e) for an unbounded and arbitrary 
Poisson”s equation is: 

la 
() 
+ +L&=_4np 

;s r2 ae2 

charge distribution. For this situation, 

(1) 

where # is the potential and p is the charge distribution, The boundary conditions on 
Eq. (1) are that 4 is finite at r = O and goes to zero in the limit of r+-. The functions @ 
and p can be written in their Fourier series representations as: 

m 
im* f3(r, *) = Z pm(r) e 

m=-- 

The resulting equations for *~ and p ~ are: 

1 
Pm(r) = fi 

(1 1 a aqm .— 
r ar ‘r 

f 

K 

d* e 
-ire* p(r, *) 

o 

2 
- ‘~ +m(r) = -4rCPm 

r 

(2) 

(3) 

(4) 

(5) 

Equation (5) can be solved using a Green’s function, which can be found easily as: 

Gm(r; r’) = 

-1 r< Iml 

[) ~q q #O 

q .O 

(6) 

where r< = min(r,r’) and r> = max(r,r”). 

The general solution to Eq. (5) is: 
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*m(r)
J

= -4n ‘dr’r’pm(r’) Gm(r;r’)
o

(7)

or

[r

w
#o(r) = -411 dr’r’po(r’) in(r) +

J
dr’r’po(r’) ln(r’)

o r 1
(8)

The radial and azimuthal electric field components can be obtained using E = - V4:

(9)

19Ee(r,9) = -F ae = -;
[

@ ~meime - $_me-ime
❑ = lr 1

Using Eq. (8) in Eq. (9), we can obtain the following expressions for the electric field
components:

fr
2 ~de, 2;

r

n
Er(r, e) = ; dr’r’p(r’,e’) + ; de’ cos [m(e - e’)] .

0 m. 10
(lo)

([d:r’~ )
r’ m— p(r’,9’)

- Jy’ &)m ‘(r’,e’)
}

2;
f

K
Ee(r, e) = ; d9f sin [m(9 - 9’)] .

m=10
(11)

111. Solution for Point Particles
If in a simulation the charges are represented by point particles, then the charge

density can be written as:

N
P(r,e) = z qi&r~ - ‘i) ‘(e - ‘i)

i=l
(12)

6



where qi is the charge of the i ‘th particle, ri ,ei denote the position of the particle and the
&-functions are defined such that

w

f f

n
dr’r’ 6r(r - r’) = 1 ; de’ a(e - e’) = 1
0 0

Let us assume that the particles are sorted
rl < rz < . .. . < ri < ri+l < .. . . < rN .
given by:

2; 2;

[

n
Er(r,e) = ~ qi+; z

i=l ❑=1 i=l

in ascending order so that
The fields at a point r,ewith r. < r < rn+l are

‘i c“’ [m[e - ‘i)l[~)m
(13)

N
E qicos [m(e - ei)] [–]m]

i=n+l i

[

Z;n
Ee(r,e) = ~

[ 1[)‘i ❑Zqi sin m(e - ei) ~
❑=l i=l

N
+ &

[ 1[]]
qi sin ❑(e - ei) ~ m

i=n+l ‘i

Define the sums:

n
So(n) = & qi

i=l

n
S;(n) = X qir~ sin ❑ei

i=l

n
S:(n) . & qirf cos ❑fli

i=l

N
St(n) = z

1
q~ < sin rnei

i=n+l r.
1

(14)

(15)

N
Sf(n) = z qi ~ cos ❑ei

i=n+l r.
1

7



In terms of these sums the fields in Eqs. (13-14) become:

2
m

Er(r,e) = ; So(n) + # Z
[(
~ costne S;(n) + sinme S~(n)

)m=lr

m-r
[
cOsme

2;Ee(r, e) = ~
m=l

+r
(

❑ sinme

St(n) + sinme S~(n)
1]

[(~ sinme St(n) - cOsme S;(n)
1

S:(n) - cOsme S~(n)) 1

(16)

(17)

In the numerical evaluation ofEqs. (16-17), the Fourier series is truncated atavalueof
m= M, where M insufficient to resolve the azimuthal structure of the problem under
consideration. Typically in a particle simulation code the fields need to be evaluated at the
particle positions in order to solve the equations of motion for the particles. Thus,
evaluation of Eqs. (16-17) is a process that scales with N. The evaluation of the sums in
Eq. (15) is also a process that scales with N. In general the particle radii need to be sorted
in ascending order, which is a process that scales with N log N. (GJThus the overall scaling
of an algorithm based on the above method is N log N, N being the number of simulation
particles.

In Fig. (1) we show a plot of the radial electric field for a charge distribution made
up of 256 point particles loaded with a Gaussian distribution and for M = 2. This field is
compared to the field from a true Gaussian distribution,

21 _r2,a2
E(r). = (l-e )

where 1 = ecN is an effective current with N being the density per unit length and a is the

Gaussian radius. In Fig. (2) we plot the actual simulation particle positions. The
singularities in the field for near particle interactions are replaced by discontinuities. This
is due to the truncation of the Fourier series at a small value of M. The near field

singularities are recoverable if the number of Fourier modes kept in the expansion
approaches the number of simulation particles. As will be discussed in the last section, the
field discontinuities due to point particles cause non-physical emittance growth. unless the
step size (for finite differencing) is chosen to be small enough so as to resolve the
discontinuities accurately. Since the running time for a given problem is inversely
proportional to the step size, a method is needed that does not require a smaller step size
than that set by the physical characteristics of the problem. Such a method is the use of
finite-sized particles, which is the subject of the next section.
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IV. Solution with Finite-sized Particles
The use of ftite-sized particles in particle simulation codes is a common

technique.(’) If the particle size is chosen appropriately, there should be no loss in
physical phenomena and the step size should not be smaller than the physics in the
problem requires. To see what is involved with finite-sized particles and how they affect a
gridless algorithm, consider
field integral of the form:

E(r) =
r
dr’r’p(r’)
o

an axisymmetric situation where we need to evaluate a simple

Let the charge density be represented by the sum over discrete particles each with charge
density g(r-ri), that is:

N
p(r) = Z qig(r- ri)

i=l

and (18)

N rE(r) = Z q. dr’r’g(r’ - ri)

i=l 10

If the function g(r’-ri) is analytic and is monotonicallyy decreasing for increasing Ir’-ri1, then
such a function is not separable in r’ and ri, that is, the function g(r’-r~) can not be written
as a product of a function of r’ and another function of ri. This immediately implies an N2
scaling to evaluate Eq. (18) at N points. Clearly this has no advantage over the direct
summation algorithm.

The simplest form for a particle density distribution that results in a separable
solution is a square particle, that is:

For this density. integrals such as in Eq. ( 18) result in integer powers which are clearly
separable. With such a particle distribution, the discontinuities in the field are eliminated,
however, ~E/~ r will be discontinuous at the particle boundary. For continuous field
derivatives of order n at the particle boundary. the particIe density also needs to have
continuous derivatives of order (n-I) at the boundary.

In general the charge density can be written as: IY(r,e)= Zqigi(r.e).The simplest
density distribution in two dimensions is of the form:

gi(r,e) = CiH(r - ri,a) H(e - Oi,Ai) (19)

where the function H(x,a) is unity for 1x1< a and zero othenvise, a is a measure of
particle extent in the radial direction and hi is the angular extent of the i“th particle. The
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normalization of the density requires that Ci = 1/(4a r#i) . TO have reasonably square
profiles we choose Ai = alri, which gives Cl = l/4aQ. For particles that lie close to the
origin so that ri-a < 0, ~. (19) breaks down. The simplest way to overcome this
difficulty is to have position dependent particle size for those particles, such that the
condition rl-a > 0 is always satisfied. For large enough number of particles, this
restriction does not have any impact on the physics as will be shown in the following
section.

For the particle charge density given by Eq. (19), the radial and azimuthal integrals
that need to be evaluated in Eqs. (1O-11) are:

O;(r) =
r
drfr’E(r’- ri,a)

o

f

n rn
p~(e) = de’ H(e’ - ei, Ai) P;’ (e) = de’ cOs[m(e - e’)] H(e’ - ei, Ai)

o 0

rn
p~i (e) s tje~sin[m(~e’)] H(e’- ei,Ai)

o

In terms of these quantities, the radial and azimuthal fields can be written as:

2;

[

m
p~i(e) (Q~i(r) -Er(r, e) = ; qic~ ‘~(e) ‘~(r) + •~~ 1Q~i(r)) (21)

i=l

2;
m

Ee(r, e) = ~ ‘ici ~~1 pfi(ei (Qfi(r) + Q~i(r)
i=l

)]

The azimuthal integrals are easily evaluated and the results are:

1p~i(e) = ~ cos ~(e - ei) sin mAi

p~i(e) = ~ sin ~(e - ei)] sin mA.
1

(22)

(23)

For the radial integrals, three cases need to be distinguished based on the position of the
field point relative to the particle radial position.
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I.r>ri+a
In this case the field point r is above the particle boundary and we have:

Q;(r) =
[

* (ri+ a)2 - (ri - a)2]

Q~l(r) = 1
[
(ri+ a)

❑+2
- (ri - a )M+2

(m+*) rm 1 (24)

ILr, -a<r<r:+a.——
In this case the field point r overlaps with the particle and the radial integrals become:

12
[

Q;(r) = ~ r - (ri- a)21
Q~i(r) = 1

[
m+2r - (ri- a)m+2

(m+*) rm 1 (25)

“[
m

2r- ❑ [
(ri + a)2-m - r2-m1 m#2

Q~l(r) =

[1

r.+a
1

rmln —
r

❑ =2
1

In this case the field point r lies below the particle and the result is:

Q:(r) = O

Qfi(r) = O

(26)

[

m

[
2-m

*r_ m (ri + a) - (ri - a)2-m 1 m#2

Q~i(r) =

(r)

r.+a
1

rmln —
❑ =2

i
-a \

It is clear that all the expressions in Eqs. (2 I-26) are separable in r and ri and thus scaling
with the number of particles, N, is possible. Since the fields at a point r involve sums over
all the particles, we can write:
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(27)
N

[1

k

[1
j

[1
N

z I= z + & + z
i=l i=l i=k+1 i=j+l [1

where j and k for a given field point r are defined by:

‘j - a<r<rj+l-a
(28)

‘k ‘a<r<rk+l-a

The first sum in Eq. (27) involves case 1. radial integrals, the second involves case 11. and
the third involves case 111. From Eq. (28) il is clear that if j = k, then no patiicles overlap
with the field point r. For N particles which are sorted in ascending order of radii, r,, rz,
. . . . the indices k and j for a field point r, can be found using the bisection method, which
is a process that scales with log N. We denote this process by the locating process.

Summa ry of the Fields
Having worked out the framework for the field calculations we now write down

detailed expressions which can directly be used for computation purposes. Define the
following expressions:

N
Il(r,e) = Z qi Ci

i=l

N
I~(r,e) = Z qi Ci

i=l

N
If(r,e) = Z qi Ci

i=l

N
I~(r,e) = & q~ c~

i=l

N
I~(r,e) = X qi Ci

i=l

Using these expressions,

Er(r, O) =
2

[
; I1(r,e) +

p~i(e) Qfi(r)

p~i(e) Q~i(r)

P~i(e) Q~i(r)

Pfi(e) Q~i(r)

the fields are:

w

E (Ij(r, O) - I~(r,e))
m=l 1

2;
Ee(r,e) = ~

[
If(r,e) + I~(r,e)

1
❑=l

(29)

(30) ‘
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Define the sums:

k

[1

sin mei
S;(k) = Z qiCi(ri + a)

m+2
sin •~

i=l i cos me.

2 1

k

[1

sin m9
S:(k) = Z qiCi sin ❑Ai ~o~ ~ei

4 i=l i

k

[1

sin me.
S! (k) = Z qiCi(ri - a)

m+2 1sin mA.
i=l 1 cos me.

6 1

N

[ 1{sin me.
G: (k) = z

(ri+ a)z-m ❑ #2
qiCi sin ❑Ai =Os Mel

i=k+l in (ri + a)
2 i ❑ =2

1

G:(k) = S:(k)

G:(k) = S:(k)

N
G;(k) =

[ 1[

sin me. (ri- a)z-m
z’

m*2
qiCi sin mAi =Os ❑el

i=k+l ln(ri- a)
6 i ❑ =2

1

k
Ll(k) = &

[
qiCiAi (ri + alz - (ri - a)z

i=l 1
k

L2(k) = Z qicibi
i=l

k
L3(k) = Z qiCi(ri - a)2 Ai

i=l

In terms of these sums we have:

[
11(r,9) = Ll(k) + rz L2(j) - L2(k)] - L3(j) + L3(k) (31)
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I~(r,e) =

+

I~(r,e) =

2
{(
cos ❑e s;(k) - S:(j)) + sin ❑e(s~(k) - S!(j))

m(m + 2)rm

m+2
r

[
cos ❑e S~(j) - S~(k)) + rm+2

(
sin me St(j) - S:(k))

)
(32)

{(
amrm cos ❑e G;(k) - G:(j)) + sin rne(c~(k) - G:(j))

( ) (
-fro(r)cos me G%(j) - G:(k) - fro(r) sin rne G:(j) -

)
Gf(k)) (33)

I~(r,e) = 2
((
sin me .$(k) - S:(j)) - cos rne(s~(k) - S:(j))

❑(m + 2)rm

+r
(

‘+2 sin ❑e S~(j) - S:(k)) - rm+2
[

cos ❑9 St(j) - S:(k))
)

(34)

I~(r,e) . amr
((

m sin me G;(k) - G:(j)] - cos •e~~(k) - G:(j))

(-fM(r) sin meG~(j) - G;(k)) + fro(r)cos
)

me~~(j) - G;(k)) (35)

{

2
a=m m(2 – m) ‘ fro(r)= rz-m m#2

where
am= 1 ? fro(r)= in(r) ❑ s 21

Again the indices kandj are found by Eq~(28). The evaluation of the above sums isa
process that scales withN. Since both the sorting and locating processes scale with Nlog
N (for N particles and N field points), the overall sealing of an algorithm based on the
above formalism will be N log N, which is the desired scaling.

v. Application tothe BUCKSHOT CODE
BUCKSHOT is a gridless particle simulation code that was written primarily for the

purpose of studying the ion hose instability f3-4J,which is an electrostatic instability that
develops ona relativistic electron beam propagating on an ion channel in the ion focused
regime(l). In the code, the beam and plasma channel (ions and electrons) are divided into
slices and each slice is represented by a collection of filaments with specified charge and
current. The equations of motion for the filaments are solved in the plane transverse to the
direction of propagation. The forces on a given filament (also referred to as particle) are
due to filaments within the same slice, that is forces from adjacent slices are neglected.
The beam is assumed to propagate in the axial direction at the speed of light, that is, the

14



paraxial approximation is invoked. Electrodynamics effects are assumed to be small for
problems of interest and are not included in the code.

The equations of motion solved by the code for particles within a slice (in the me
with no applied magnetic field) are:

(37)

(38)

where ri is the position of the i‘th particle in the transverse plane, z is the axial distance
and L is the slice variable defined by: C = et-z , where tisthetimemeasured inthelab
frame. The superscript b denotes beam particles and c denotes channel particles (both
electrons and ions). The sum over s is over all the species in the problem, N~ is the
number of simulation particles for the s‘th species in the slice, rP is the simulation particle
radius and the matrix a is defined by:

I

“(y’me] “’[me] “[we]
2eIb ~

f -f
a= —-—~3 Illi q Fi

I

(39)

11—
❑
e

-f—
m
e

f—
m
e I

where 1~is the beam current, Y is the relativistic factor for beam electrons, f is the
neutralization fraction (channel line density/beam line density), m, is the electron rest mass
and mi is the ion mass. The additional factor of I /Y2 in the matrix element abb results

from the near cancellation of the radial electric field and azimuthal magnetic field of the
beam. The force law used in Eqs. (37-38) assumes Bennett profiles of radius rP for the
simulation particles.

For a slice, the sums in Eqs. (37-38) need to be evaluated N times, where N is the
total number of particles in the slice: N = z N~, thus the execution time of the code scales
as N2. Because of the simplicity of the algorithm and vectorization capability of CRAY

computers, the code is relatively fast for a moderate number of particles (around
N = 100). However, as N increases, the cost becomes prohibitively expensive.

The algorithm developed in the previous section was implemented in a new version
of the BUCKSHOT code which gave it the desired N log N scaling and still maintained
vectorization. To keep the number of Fourier modes small, the Fourier decomposition of
the fields is done about the center of mass of each species. Using this technique, it is
possible to simulate nonlinear ion hose physics with only the m = O mode. Typically up
tom= 2 modes are kept in order to accommodate non-axisymmetric changes in profile I
shapes of the beam and channel. For problems with high order azimuthaI structure, a
large number of Fourier modes will be required. This might result in roundoff problems in
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the evaluation of the sums as well as slowing down of the code. With these limitations we
expect that this algorithm is not well suited for problems with high order (M > 8)
azimuthat structure. In Fig. (3) we compare the cpu time (normalized) for both versions of
the code which clearly shows the N* and N log N scalings. The breakeven point is about
64 particles/species/slice when m = 2 modes are kept. For a typicat problem with
256 particles/species /slice, the new version is about 2.7 times faster than the old one
when up to m = 2 modes are kept.

As was discussed earlier, it is important to choose the particle size in a simulation to
be small enough so as not to wash out important physics and yet it must be large enough
so that field fluctuations are small. In Fig. (4) we compare the radial electric fields for
both the new and old versions of BUCKSHOT with the exact field for a Gaussian charge
distribution for different particle sizes. For the old version the particles have Bennett
profiles and for the new the profiles are given by Eq. (19). The same particle loading
algorithm is used for both versions and it is shown in Fig. (2). In general it is found that a
particle size given by: r“ = 2 r~/~N is sufficient to keep the field fluctuation level low
enough. The effect of fi”eldfluctuations can be seen by considering single particle orbits in
the charge distribution. In Fig. (5) we show such orbits for a single electron which moves
axially at the speed of light c and undergoes radial oscillations according to :

~ dzx _ -eEx(X)

e dz2
2

c

where EXis the x-field due to the charge distribution and y is the relativistic factor for the
electron. It is clear from Fig. 5cd (only the step size is different) that when the step size
is large compared to the scale length of variation of the field fluctuations, these fluctuations
are not resolved and numerically the potential seems time varying or nonconsewative. This
is why the amplitude varies in Fig. 5C when the particle size is small and the step size is
large.

The new and old solvers were compared for an IFR (Ion Focused Regime)
propagation problem with the following parameters:

Beam radius
Ion channel radius
Beam offset

Beam current
Ion mass
Relativistic factor
Axial magnetic field
Channel neutralization
Particles/slice/species
Particle radius
Step size
Ion oscillation length
Betatron wavelength

r~ = 4.0 cm
ri = 3.7 cm
Xb = 0.3 cm
p“o.2cm

b = 700 Amps
mi = 0.28 mP

Y = 5.9
BZ = 30,0 Gauss
f= 1.0
N = 256
rP = 0.6 cm
dz = 5.0 cm
xi = 970 cm

‘Be
= 390 cm
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The beam simulation particles are loaded with a Gaussian profile with the corresponding
equilibrium velocity distribution. @J The ions are loaded with a Gaussian profile at rest.
The results for slice histories of the beam and channel radius and displacements are shown
in Figs. (6-11) fordifferentslices.The results using the new solver for M = 2 and M = 4
show excellent agreement, indicating that M = 2 is sufficient to resolve the azimuthal
structure for this problem. The results using the direct summation solver agree with the
new one to within 5-10% . This difference can be attributed to the different panicle
charge density profiles used in the two algorithms. Since the ion hose instability results in
considerable changes in the beam and channel profiles, small differences in the initial
fields, as seen in Fig. (4) for example, are sufficient to cause the obsemed 5-10%
variations between the two algorithms. For the simulation with M = 2 the new algorithm
is approximate y 2.7 times faster than the direct summation algorithm.

References

1. H. L. Buchanan, Phys. Fluids, Vol. 30, 221 (1987).—

2. K. A. Brueckner, Proc. Annual Propagation Phys. Rev. DARPA/SDIO/Services, 406,
Monterey, CA (1985).

3. J. S. Wagner, “BUCKSHOT, a 3-D Gridless Magnetostatic Particle Code”, Sandia
National laboratory Report SAND87-2019, to be published.

4. 1.R. Shokair and J. S. Wagner, “Analysis and Benchmarking Calculations for the
BUCKSHOT Code”, Sandia National hboratory Report SAN D87-20 15, November
1988,

5. L. Greengard and V. Rokhlin, J. Comp. Physics, Vol. 73, 325 (1987).—

6. W. H. Press, B. P. Flannery. S. A. Teukolsky and W. T. Vetterling, Numerical
Recipes, The Art of Scientific Computing, Cambridge University Press, 1986.

7. T. Tajima. Computational Plasma Physics: With Applications to Fusion and
Astrophysics, Addison-Wesley Publishing Company, 1989.

8. E. P. Lee. “Velocity Distribution in a Pinched Beam”, Lawrence Livermore National
laboratory Report UCID-I 8303, 1979.

17



Fig.

0.3

0.2

0.1

0.0

-0.1
0.0 2.5 5.0

r
7.5 10.0

1. Normalized radial electric field for a Gaussian charge
distribution of radius a = 3. The solid line is field for 256
point particles with M = 2. The dashed line is the exact field.

10.0

5.0

> 0.0

-5.0

I i 1 1

+ +
+ +

++.++
+

+
++++:+++++

+++++++++
+ +++$++:++++++++ +

+ :+;.$#i/iJ#-?:”:++
++$ i+::

+
++ ++ +++++g$~+<’:++++ + +

+ ++++++++++++++++ + + ++++$$++ + + +
+++++++++ ++++:+++++

+
++”++

+ +
+ +

-10.0
-io.o -5.0 0.0

x
5.0 10.0

2. Positions of simulation particles for a Gaussian distribution.

18



1.00

0.75

0.50

0.25

0.00
o 256 512 768 1024

NUMBER OF PARTICLES

Fig. 3. Normalized cpu time for the BUCKSHOT code for two species vs. the
number of particles per species per slice. The solid line is for
the direct summation solver, the dashed line is for the new solver
with M = 2 and the dotted line is for M = 4.

19



Fig.

0.3

0.2

0.0

-0.1
0.3

0.2

a)
G 0.1
:

0.0

-0.1

J

‘P = 0.1
.. ..

.-

0.3
‘P = 0.4

0.2
u
a).-

+ 0.1
:

0.0

0.0 2.5

4. Comparing fields from direct
Gaussian field for different

5.0 7.5

r

summation and new

10.0

solvers with exact
simulation particle sizes. Solid

line is for new solver (M = 2), dashed is for exact Gaussian and
dotted is for the direct summation solver. N =256 a = 3.0

20



4.0

2.0

0.0

-2.0

-4.0

4.0

2.0

0.0

-2.0

-4.0

(a)

0.0 250.0 500.0 750.0 1000.0

z (cm)

(b)

0.0 250.0 500.0 750.0 1(

z (cm)

0.0

5. Single particle orbit in a Gaussian charge distribution.
Parameters: I = lkA,7=2, a=3cm, xO= 3cmandvO=0.
(a) Exact Gaussian with step size dz = 4.0 cm.
(b) New solver (M = 2), N = 256, rP = 0.4 cm, dz = 4.0 cm.

21



4.0

2.0

0.0

-2.0

-4.0

4.0

2.0

0.0

(c]

0.0 250.0 500.0 750.0 1000.0

z (cm)

(d)

-2.0

-4.0
0.0 250.0 500.0 750.0 lC

z (cm)
0.0

Fig. 5. Single particle orbit in a Gaussian charge distribution.
(c) New solver (M = 2), N = 256, rP = 0.1 cm, de = 4.0 CM.
(d) New solver (M=2), N=256, rP=O.l cm, dz=l.O cm.

22



a.o

0.0

4.0

2.0

O.a
1

8.0

a.o

4.0

2.0

0.0

‘f=600.0 cm(= 100.0 cm [- 260.0 cm

60 800 080 1s00 1

z (cm)
)0100 460 800 1160 1

z (cm)

D 600 s60 1200 1660 1’

z (cm)

10.0

7.6

6.0

2.0

0.0
0

19.0-

12.0.

8.0

4.0

0.0

10.0
( = 1260.0 cm

7.6-

S.o -
.. -,--z-.

::6-

0.0
,0 1260 1600 1S60 2aoo

.$= 1000.0 cmf = 750.0 cm

4. ------- -------- -----,

50 1100 1460 1000 2

z (cm)
000 1S60 1700 2060 S

z (cm)

60

z (cm)

: = 2500.0 cm
18.0

12.0

6.0

4.0

( = 1500.0 cm ( -2000.0 cm

,,. ------- .-,----- -

N-------.,
‘,

,’
~.

.

1600 1660 2200 2660 2

z (cm)

o !000 2S60 2700 S060 S

z (cm)

o 2600 2S60 S200 9660 3600

z (cm)

beam (solid)Fig. 6. Slice history of
different slices

and ion (dashed) RMS radius for
summation solver. Simulationusing‘direct

parameters: rb = 4.0 cm, ri = 3.7 cm) xb = 0.3 cm) Yb = 0.2 crn~

Ib =o.7kA,7= 5.9,B= = 30.0 Gauss, f = 1.0, rp =0.6 cm,
d~ =-5.0 cm and Nb =Ni = 256 .

23



0.0

S.o

~
.

4.0
g

u

b

2.0

0.0

●.o

4.0

2.0

~ 0.0
)0 460 SOo 1160 1600

z (cm)

f - 750.0 cm

--------- ------

10.0

7.6

( - 250.0 cm

50 600 060 1800 10

z (cm)

( = 1000.0 cm

6.0

Y

---------- --------

C.6

!0 1100 1460 laoo ?160 1000 1ss0 Woo 2060 C

z (cm) z (cm)

( = 1500.0 cm

1s00 1060 2200 26’00 2[

z (cm)

Boo

18.0

lt.o

a,o

4.0

0.0

f -2000.0 cm

F--------.,
1-

,- \
.

;000 2s”60 2700 So’so a

z (cm)

So.

So.

4.0.

2.0.

0.0.
D

10.0

7.6.

6.0.

2.5,

0.0
D

16.0

1s.0

0.0

4.0

0.0
0

.$- 600.0 cm

00 860 1200 1660 1000

z (cm)

( = 1250.0 cm

Zso 1s00 1D60 2aoo Za

z (cm)

; = 2S00.0 cm

,. ,--->
1-.. ---- -----
,,. _

J
;:...

,’

100

Fig. 7. Slice history of beam (solid) and ion (dashed)
different slices using new solver with M = 2.

10

28s0 S200 SKSO aooo

z (cm)

MS radius for
Same parameters

as Fig. 6.

24



.-8.0

8.0,

~

4.0.
~

u
~

2.0.

0.0.

100 460 Boo 1160 1600

z (cm)

( = 760.0 cm

--------- ------

50 1100 1460 lBOO z

z (cm)

[ = 1500.0 cm

9“001600 1S60 2200 2660 21

z (cm)

● .u

a.o

4.0

2.0

0.0

10.0

7.6

6.0

2.6

0.0

1s.0

12.0

6 .a

4.C

0.[

[- 250.0 cm

60 000 960 laoo 1
z (cm)

So.

a.o

4.0.

2.0

0.0
)

10.0

.f = 1000.0 cm

7.6

6.0

2.0

~ ‘o.fJ
000 laco 1700 2060 2400

z (cm)

F ---------./,#-,,-,.
DOO 2SS0 2700 3060 $

z (cm)

16.0

12,0

6.0

4.0

0.0
D

(= 500.0 cm

100 6i0 1200 1660 1

z (cm)

( -1250.0 cm

I

Y----.-.-’---- ---
,

● .‘r

I
260 1600 1060 2?aoo 2860

z (cm)

( = 2500.0 cm

,,,-. , ------ ------- -

/$-
Fig. 8. Slice history of beam (solid) and ion (dashed)

different slices using new solver with M = 4.

’600 2660 a200 S6S0 3600

z (cm)

RMS radius for
Same parameters

as Fig. 6.

25



100 460 600 1150 1600

7s0 llDO 1460 1600 2

z (cm)

z (cm)

‘“”o~

?.6

6.0

2.6-

0 1000 laco 1700 2000 S{

1600 1060 2200 t660 2800

z (cm)

7.8

6.0

2.s

0.0

z (cm)

---

1( - 600.0 cm

1.6

1.0

0.6

0.0

10.0

7.6

I
6.0

126

loo ‘●60 laoo 1660 1

z (cm)

[ - 1250.o cm

0.0

) 1260 1000 1S60 2aoo 2660

z (cm)

10.0-
( = 2500.0 cm

7.6-

.

6.0-

11
2.6-

0.0
)00 2360 2700 2600 SS60 S200 3650 3000

z (cm) z (cm)

Fig. 9. Slice history of beam (solid) and ion (dashed) displacements for
different slices using direct summation solver. Same parameters
as Fig. 6.

26



a.o

1.0

~

u

n
1.0

m
5

0.8

0.0

2.0-

1.6

~

.

n
1.0

m

5

0.6

0.0

10.0

7.6

~

.

n
6.0

m

G

2!.6

.$-100.0 cm

Do 4s0 Soo 1160 11

z (cm)

f= 760.

A

. .
,,

,,,
1,,,

-
760 1100

I

1460 1600 i

z (cm)

f -1600.0 cm

0.0
1600 1060 2RO0 2660 21

z (cm)

‘-o_’( = 250.0 cm

1.6-

1.o-

0.6-

0 260 800 860 1300 1

z (cm)

10.0.

7.6,

6.0

0.8

0.0
0

1o.o-

7.6

6.0

E.6

0.0

( = 1000.0 cm

000 laeo 1700 So’oo t

z (cm)

2.0

1.0

1.0

0.6

0.0
D

lo. D-

7.6-

C.o.

2.6

0.0
‘o

10.0.

7.6

a.o

2.6

0.(
0 *000 2S60 n700 S0”60 6400

z (cm)

Fig. 10. Slice history of beam (solid) and
different slices using new solver
as Fig. 6.

.$= 600.Ocm

100 060 1200 1660 1

z (cm)

~=1250.Ocm

,,
260 1000 1060 asoo 2(

z (cm)

>0

60

,’

600 2060 S200 3660 aooo

ion (dashed)
with M = 2.

z (cm)

displacements for
Same parameters

27



8.0

1.6

~

u

a
1.0

m

=

0.s

0.0

( = 100.0 cm

100 4s0 Soo 11;0 11

z (cm)

( - 760.~cm

2.0

1.s

,

i 1,0

0.6.

O.o -
B

‘so 1100 14s0 1s00 2180

z (cm)

10.0

7.6

6.0

2.0

0,0

: = 1500,0 cm

100 1s50 2200 2660 2

z (cm]

lo.a

7.6

C.o

2.s

0.0
0

( = 250.0 cm

60 000 960 1s00 1’

z (cm)

( -1000.0 cm

1.6

1.0

0.6

0.0

D Soo 060 1200 16S0 1000

z (cm)

Boo Iaoo 1700 20’00 2400

z (cm)

10.0

?.6

6.0

2.s

0.0

,

000 2s60 2700 S060 :

z (cm)

10.0

7.6

S.o

*.6

0.0
0

( = 1250.0 cm

260 1000 Wio 2aoo ZI
z (cm)

so

( = 2500.0 cm I

,’
------- .

600 2060 a200 S660 Seoo

z (cm)

Fig. 11. Slice history of beam (solid) and ion (dashed) displacements for
different slices using new solver with M = 4. Same parameters
as Fig. 6.

28



DISTRIBUTION:
Unlimited Release

Air Force Weapons bboratory
Kirtland Air Force Base
Albuquerque, NM 87117
Attn: Dr. B. B. Godfrey

Defense Advanced Research Projects Agency
1400 Wilson Blvd.
Arlington, VA 22209
Attn: H. L. Buchanan

B. Hui

bwrence Livermore National hboratory
P. O. Box 808
Livermore, CA 94550
Attn: Simon Yu

Los Alamos National laboratory
University of California
P.O. BOX 1663
bS /damOS, NM 87544
Attn: H. O. Dogliani, H818

J. Mack, P940
T. P. Starke, P942

Mission Research Corporation
1720 Randolph Road, SE
Albuquerque, NM 87106
Attn: D. Welch

T. Hughes
M. Mostrom
K. Struve

Mission Research Corporation
8560 Cinderbed Road-Suite 700
Newington, VA 22122
Attn: Khanh Nguyen

Naval Research Laboratory
Department of the Navy
Washington. D. C. 20375
Attn: M. Lampe

R. Hubbard
G. Joyce
J. Krall
S. Slinker
R. Femsler

Naval Surface Weapons Center
White Oak bboralory
Silver Spring, MD 20910
Attn: Eugene E. Nolting (H23)

Han Uhm

Pulse Sciences, Inc.
600 McCormick Street
San Leandro, CA 94577-1110
Attn: S. D. Putnam

SSC Lab
2550 Beckeymead Avenue
Mail Stop 1046
Dallas, TX 75237
Attn: Gordon Leifeste

Science Applications Int’1 Corp.
5150 El Camino Real, Suite B-31
bS Altos, CA 94022
Attn: L. Feinstein

Science Applications Int’1 Corp.
1710 Goodridge Drive
McLean, VA 22102
Attn : W. Reinstra

Southwest Research Institute
Drawer 28510
6220 Culebra Road
San Antonio, TX 78284
Attn: C. S. Lin

Commander
Space & Naval Warfare Systems Command
PMW-145
Washington, DC 20363
Attn: Lt. Bill Fritchie

Titan Technologies-Spectron Division
2017 Yale Blvd., SE
Albuquerque, NM 87106
Attn: R. B. Miller

J. Smith

University of Alaska
Geophysical institute
Fairbanks, AK 99701
Attn: S. 1. Akasofu

L. C. Lee

University of Texas at Austin
Institute for Fusion Studies
Austin, TX 78712
Attn: T. Tajima

29



Internal Distribution:
1000 V. Narayanamurti
1200 J. P. VanDevender
1201 M. J. Clauser
1230 J. J. Ramirez
1231 J. R. Lee
1240 K. R. Prestwich
1241 J. R. Freeman
1241 R. W. Lemke
1241 B. M. Marder
1241 K. J. O’Brien
1241 C. L. Olson
1241 J. W. Poukey
1241 D. B. Seidel
1241 I. R. Shokair (15)
1241 J. S. Wagner (15)
1242 B. N. Turman
1242 C. A. Frost
1242 R. J. Lipinski
1242 M. G. Mazarakis

1242 S. L. Sho e
!1244 J. M. Ho hnan

1260 D. L. Cook
1265 J. P. Quintenz
1270 J. K, Rice
1275 R. A. Gerber
3141 S. A. Landenberger (5)
3[51 W. 1. Klein (3)
3141-1 C. L. Ward for DOE/OSTI (8)
8524 J. A. Wackerly

30



—+

I
I .-L-

,,M’’’--’

Bldg. Name RPC’[J by
➤–.. ,- .—- . ,—..- --—

1-“-‘-T ––
1

~-- ‘-”--

.—–—-

4-

(

t ‘-” ‘“- ‘“--
I

1-~4- --- -—-——---

1. .- —--- . ..—

m Sandia National Laboratories


	I. INTRODUCTION
	II. SOLUTION OF POISSON'S EQUATION IN CYLINDRICAL GEOMETRY
	III. SOLUTION FOR POINT PARTICLES
	IV. SOLUTION WITH FINITE-SIZED PARTICLES
	V. APPLICATION TO THE BUCKSHOT CODE

